RELATIONSHIP OF COMPONENTS IN HOMOGENEOUS PLUTONIUM MIXTURES

A general approach is to define a solution or mixture as a sum of the fractional volumes, e.g.:

$$1.0 = \frac{\rho_1}{\rho_1^0} + \frac{\rho_2}{\rho_2^0} + \frac{\rho_3}{\rho_3^0} \cdot \cdot \cdot$$

where ρ is the density of a material in the mixture and ρ° is the density of a material with no other materials present. Using this relationship, a general equation may be derived for uranium and plutonium solution or mixtures:

$$H/(Pu+U) = \frac{0.1110 \left(1000 - \left(A_{H} + \frac{1}{\rho_{H}^{o+}} + \frac{G'}{\rho_{H}^{o+}} - 9.010\right)M\right)}{\left[\left(1-G'\right) \sum_{i=1}^{u} \frac{f_{i}}{A_{i}} + G' \sum_{j=1}^{pu} \frac{f_{j}}{A_{j}}\right] g(U+Pu)/2}$$

$$-\left[\begin{array}{c} \frac{(1-G')}{F_{u}^{\rho} \stackrel{\circ}{u}} + \frac{G'}{F_{pu}^{\rho} \stackrel{\circ}{p} ux} \\ \hline (1-G') \sum_{i=1}^{u} \frac{f_{i}}{A_{i}} + G' \sum_{j=1}^{pu} \frac{f_{j}}{A_{j}} \end{array}\right] 0.1110$$

where:

 A_{H} = Molecular weight of acid (or other material)

A, = Atomic weight of uranium isotope

A, = Atomic weight of plutonium isotope

M = Acid Molarity

f, = Weight fraction of uranium isotope in uranium

f = Weight fraction of plutonium isotope in plutonium

ρ° = Full theoretical density of uranium compound, e.g., 10.96 for UO₂

 $\rho_{\text{pux}}^{\circ}$ = Full theoretical density of plutonium compound

 F_{11} = Weight fraction of uranium in uranium compound

F = Weight fraction of plutonium in plutonium compound

 ρ_{H}° + = 100 percent acid density*

G' = Weight fraction of plutonium in total uranium plus plutonium

$$= \frac{1}{1 + \frac{F_u}{F_{pu}} \left(\frac{1}{G} - 1\right)}$$
 where G = weight fraction of Pu compound

in total compound, e.g., PuO_2 in $PuO_2 + UO_2$.

0.1110 = 2/molecular weight of water = 2/18.02

9.010 = molecular weight of water/2 = 18.02/2

*The effective value varies with the experimental work, see next page.

Various values may be inserted into the general H/U+Pu equation to obtain a particular equation for the materials used. Some values that may be used are shown in the following table:

USEFUL VALUES FOR GENERAL H/X EQUATION

Symbol	Pu0 ₂	U0 ₂	U03	Pu(NO ₃) ₄	UO ₂ (NO ₃) ₂
ρ <mark>ή</mark> +	- '	-	-	1.9053*	1.9683**
$\rho_{\mathtt{pux}}^{\mathtt{o}}$	11.46(th.)	-	-	5.629*	-
F pu	0.8819	-	-	0.49079	-
ρo ux	-	10.96(th.)	8.34(th.)	-	5.1657**
F _u	-	0.8815	0.8322	-	0.60409
A _H +	-	-	-	63.0147	63.0147

^{*}Obtained from least squares fit of solutions analyses - C. R. Richey, Nuclear Science and Engineering, Vol. 31, No. 1, 1968.

Using the above values we can derive the following particular equations for plutonium systems:

H/Pu =
$$\left(\frac{26535}{gPu/l} - 1.3538\right)/(f_{239} + .99583f_{240} + .99170f_{241})$$

<u>Pu Nitrate</u>

$$H/Pu = \left(\frac{26535 - 638.5M}{gPu/l} - 9.605\right) (f_{239} + .99583f_{240} + .99170f_{241})$$

$$(PuO_2+UO_2)-H_2O$$

$$\frac{26535}{g(Pu+U)/l} - 26.535 (.10351-.004565G')$$
H/(Pu+U) =
$$\frac{(1-G')(1.01706f_{235} + 1.00420f_{238}) + G'(f_{239} + .99583f_{240} + .99170f_{241})}{(1-G')(1.01706f_{235} + 1.00420f_{238}) + G'(f_{239} + .99583f_{240} + .99170f_{241})}$$

^{**}Derived from the equation ρ_{sol} = 1.0012 + 0.3177 M_{UNH} + .03096 M_{H} +.